Mark Scheme - 3.5 Chemical Kinetics

1.

(a)	(i)	tangent drawn at t = 40 (1)		
		rate calculated 0.017 to 0.0	27 (ignore units) (1)	[2]
	(ii)	as reaction proceeds less c	ollisions (per unit time) occur	[1]
(b)	(i)	1st order shown by:		
		calculation of rates at at lea	st 2 concentrations (1)	
		statement rate α concentrat	ion (1)	
		OR		
		constant half-life (1)		
		half-life is 24 minutes (1)		[2]
	(ii)	rate = $k[N_2O_5]$ (1)		[1]
	(iii)	k = rate (from (i))/ [N ₂ O ₅] (from (mark correct numbers – no		
		units = minutes ⁻¹ (1)	ft from (ii)	[2]
	(iv)	(student A more likely to be rate determining step	correct) reaction is 1 st order and 1	[N ₂ O ₅] involved in [1]
(c)	corre	ct curve starting at 100 kPa a	nd becoming horizontal (1)	
	horizontal at 250 kPa (1)			[2]
				Total [11]

(b) (i)

	[NH ₄ +(aq)]/mol dm ⁻³	[NO ₂ -(aq)]/mol dm-3	Initial rate/mol dm ⁻³ s ⁻¹
1	0.200	0.010	4.00 × 10 ⁻⁷
2	0.100	0.010	2.00 × 10 ⁻⁷
3	0.200	0.030	1.20 × 10 ⁻⁶
4	0.100	0.020	4.00 × 10 ⁻⁷

(1 mark for each correct answer)

[3]

(ii)
$$k = 4.00 \times 10^{-7} = 2.0 \times 10^{-4}$$
 (1) 0.200×0.010

Units =
$$mol^{-1} dm^3 s^{-1}$$
 (1)

(iv) Increases

If temperature is increased rate increases (1)

and since concentrations do not change the rate constant must increase (or similar) (1) [2]

Total [10]

(a)	Lead	d(II) iodide or Pbl ₂ (1) Bright yellow (1)	[2]			
(b)	2Cu ²	$^{2+}$ + 4I ⁻ \rightarrow 2CuI + I ₂ (1)				
	The	The precipitate is copper(I) iodide (stated or clearly indicated by state symbols) (1) [2]				
(c)	Bron	Bromine has a more positive E ^e than iodine so it is a stronger oxidising agent (1)				
	Bron	nine is able to oxidise iodide (1)				
	Bron	Bromine has a less positive E ⁶ than chlorine so it is a weaker oxidising agent (1)				
	Bron	Bromine is not able to oxidise chloride (1)				
	MAX	MAX 3				
		Calculate EMF for each reaction (1 each) and state tion is feasible (1)	that positive EMF means [3]			
	QW	C Legibility of text, accuracy of spelling, punctuation meaning	and grammar, clarity of [1]			
(d)	1 mark for each two products or observations KHSO ₄ HI H ₂ S SO ₂ S I ₂ [MAX 2 for products]					
	Yello	ow solid rotten egg smell steamy fumes				
	Black	k solid or brown solution or purple fumes				
	MAX 3					
(e)	(i)	Measure time taken for a sudden colour change (1 Rate = 1 ÷ time (1)	[2]			
	(ii)	I. pH 1 has a concentration of H+ ten times highe	r than pH 2. [1]			
		II. Order with respect to H ₂ O ₂ = 1 (1) Order with respect to I ⁻ = 1 (1) Order with respect to H ⁺ = 0 (1) [MAX 2 for the Rate = k[H ₂ O ₂] [I ⁻] (1)	stated orders] [3]			
		III. $k = 0.028$ (1) mol ⁻¹ dm ³ s ⁻¹ (1) [ecf from rate eq				
		IV. Rate equation is unchanged and increasing t				
		value of the rate constant	[1]			
			Total [20]			

4.

5.

(a)	Plott	ting	(2)	
	Best	fit line	(1)	[3]
(b)	(i)	C	(1)	
		Curve steeper	(1)	[2]
	(ii)	Concentration of acid is greatest		[1]
(c)	44 c	m ³ (±1 cm ³)		[1]
(d)	Mole	es Mg = 0.101/24.3 = 0.00416	(1)	
	Mole	es HCI = 2 x 0.02 = 0.04	(1)	[2]
(e)	(i)	Mg is not the limiting factor /		
	Mg now in excess / HCl not in excess			[1]
	(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)	
		Volume $H_2 = 0.01 \times 24 = 0.24 \text{ dm}^3$		
		- correct unit needed	(1)	[2]
(f)	Low	er the temperature of the acid	(1)	
	Reactants collide with less energy (1)			
	Few	er molecules that have the required act	tivation energ	gy (1)[3]
or	Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)			chance
		ction of a form and style of writing appro plexity of subject matter.	opriate to pu	rpose [1]

Total [16]

(a)		Use weighing scales to weigh the metal oxide Use measuring cylinder to pour hydrogen peroxide solution	(1) and	
		water into a conical flask	(1)	
		Immerse flask in water bath at 35 °C	(1)	
		Add oxide to flask and connect flask to gas syringe	(1)	
		Measure volume of oxygen every minute for 10 minutes /		
		at regular time intervals	(1)	
		(any 4 of above, credit possible from labelled diagram)		[4]
(b)		Oxide A because reaction is faster		[1]
(c)	(i)	18 cm ³		[1]
				200
	(ii)	10 cm ³		[1]
(d)		Concentration of hydrogen peroxide has decreased (1)		
		reaction rate decreases / fewer successful collisions (1)		[2]
(e)		All the hydrogen peroxide has decomposed /		
		the same quantity of hydrogen peroxide was used		[1]
(f)		25 cm ³		[1]
(a)		Reaction will take less time (1)		
(g)				
		Reactants collide with more (kinetic) energy (1)		[0]
		More molecules have the required activation energy (1)		[3]
		QWC Selection of a form and style of writing		
		appropriate to purpose and to complexity of subject matter		[1]

Total [15]

- (a) (i) He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1)

 He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1)
 - (ii) The concentration of acid is higher in the first half (1) the collision rate is higher (1)[2]
 - (iii) eg k = $\frac{V}{T}$ (1) : k = $\frac{130}{298}$ / 0.436

$$\therefore V = 0.436 \times 323 = 141 \text{ (cm}^3\text{)}$$
 (1)

or
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
 (1) $\therefore V_1 = \frac{323 \times 130}{298} = \frac{141 \text{ (cm}^3)}{141}$ (1) [2]

- (b) (i) 260 (cm³) [1]
 - (ii) 0.45 (g) (0.43–0.48) [1]
- (c) The diagram shows two reasonable distribution curves with T₂ flatter and 'more to the right' than T₁. (1)
 Activation energy correctly labelled, or mentioned in the writing (1)
 Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1)

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC [1]

(d) Place the mixture on a balance and measure the (loss in) mass (1) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD

eg. sample at intervals / quench (1) titration (1) [2]

Total [14]

(a) to increase rate of reaction / to increase surface area
 [1]

(c) rate starts fast and gradually slows (1)

because concentration becomes less so fewer collisions (per unit time) / less frequent collisions / lower probability of collisions (1)

- (d) all the solid would all have disappeared / if more carbonate is added further effervescence is seen [1]
- (e) (i) volume CO₂ = 200 cm³ (1) moles CO₂ = 200 / 24000 = 0.008333 = moles MgCO₃ (1) [minimum 2 sf] [2

(ii) mass MgCO₃ =
$$0.008333 \times 84.3 = 0.702 \text{ g}$$
 (1)
% MgCO₃ = $\frac{0.702}{0.889} \times 100 = 79.0\% / 79\%$ [2]

- (e) carbon dioxide is soluble in water / reacts with water (1)
 volume collected less therefore % / moles of MgCO₃ less (1)
 [2]
- (f) use of 40.3 and 84.3 (1) atom economy = 40.3 / 84.3 × 100 = 47.8% (1) [2]

Total [14]

[2]